bậc hai

Chuyên đề: Phương trình bậc hai chứa tham số

Về các bài toán phương trình bậc hai chứa tham số, chúng ta thường phải sử dụng hệ thức Vi-ét để giải. Bằng việc áp dụng định lý Vi-et, các em sẽ dễ dàng giải các bài tập dạng PT bậc 2 chứa tham số. I – KIẾN THỨC CƠ BẢN 1. Ứng dụng hệ thức […]

Chuyên đề: Phương trình bậc nhất, bậc hai một ẩn

Hôm nay, Timgiasuhanoi.com cùng các em ôn tập Chuyên đề Phương trình bậc nhất, bậc hai một ẩn. Chuyên đề này cũng nằm trong chuyên đề ôn thi vào 10 môn Toán. Các em cần phải thuộc, ghi nhớ lý thuyết về phương trình bậc nhất, bậc hai và định lý Vi et. A. Lý thuyết: […]

Điều kiện về nghiệm của phương trình bậc hai

Giải phương trình, tìm điều kiện về nghiệm của phương trình bậc hai là một nội dung quan trọng trong chương trình THCS, nhất là bồi dưỡng toán 9. Các em cần phải nắm được các kiến thức về công thức nghiệm của PT bậc 2, Định lý Vi-ét các kiến thức có liên quan, […]

Phương trình quy về phương trình bậc hai

Có hai dạng phương trình có thể quy về phương trình bậc hai đó là: phương trình trùng phương, phương trình chứa ẩn ở mẫu thức. 1. Phương trình trùng phương – Phương trình trùng phương là phương trình có dạng: $ \displaystyle ax_{{}}^{4}+bx_{{}}^{2}+c=0$ (a ≠ 0) – Giải phương trình trùng phương $ \displaystyle ax_{{}}^{4}+bx_{{}}^{2}+c=0$ (a […]

Hệ thức Vi-ét và ứng dụng giải hệ phương trình bậc hai

1. Hệ thức Vi-ét Nếu $ \displaystyle {{x}_{1}},{{x}_{2}}$ là hai nghiệm của phương trình $ \displaystyle ax_{{}}^{2}+bx+c=0$, a ≠ 0 thì: $ \displaystyle \left\{ \begin{array}{l}{{x}_{1}}+{{x}_{2}}=\frac{-b}{a}\\{{x}_{1}}{{x}_{2}}=\frac{c}{a}\end{array} \right.$ 2. Ứng dụng của định lý Vi-ét a. Tính nhẩm nghiệm – Nếu phương trình ax2 + bx + c = 0$ \displaystyle ax_{{}}^{2}+bx+c=0$ có a + b + c = […]

Công thức nghiệm của phương trình bậc hai $ \displaystyle ax_{{}}^{2}+bx+c=0$ (a ≠ 0)

Công thức nghiệm của phương trình bậc hai $ \displaystyle ax_{{}}^{2}+bx+c=0$ (a ≠ 0) Đối với phương trình $ \displaystyle ax_{{}}^{2}+bx+c=0$ (a ≠ 0) và biểu thức $ \displaystyle \Delta =b_{{}}^{2}-4ac$: – Nếu ∆ > 0 thì phương trình có hai nghiệm phân biệt: $ \displaystyle {{x}_{1}}=\frac{-b+\sqrt{\Delta }}{2a}$ và $ \displaystyle {{x}_{2}}=\frac{-b-\sqrt{\Delta }}{2a}$ – Nếu ∆ = […]

Phương trình quy về phương trình bậc nhất, bậc hai

Lý thuyết giải phương trình quy về phương trình bậc nhất, phương trình bậc hai Tóm tắt lý thuyết giải các phương trình: 1. Giải và biện luận phương trình có dạng ax + b = 0 (1) – Nếu a≠ 0 : (1) có nghiệm duy nhất $\displaystyle x=\frac{{-b}}{a}$ – Nếu a = 0; […]

Gia sư Hà Nội Copyright © 2020 DMCA.com Protection Status Gia sư Hà Nội